3 Banach, Hilbert and Sobolev Spaces

We intend to approach the question of existence of solutions to Dirichlet prob-
lems through theory associated with Sobolev Spaces. Therefore, the first part of
this section looks at Banach and Hilbert spaces from a functional analytic point
of view, The Riesz Representation Theorem and further, the Lax-Milgram The-
orem. The second part of this section focuses on Sobolev spaces and introduces
the concepts of weak derivative and weak solution to equations akin to (3).

3.1 Banach and Hilbert Spaces
Let V be a linear space over R. A norm || - || on V is a mapping || - || : V = R
satisfying
(i) ||lz|]| = 0for allz € V,||z|| = 0 if and only if z = 0;
(i1)  |laz|| = |af ||z|| for all « € R,z € V; (9)
(@) |z +yll <|lzll + [ly[| for all z,y € V.
Definiton 3.8. A Banach space % is a normed linear space complete with

respect to a norm || - ||z. That is, every sequence {x,}5°, C B Cauchy with
respect to the norm || - ||z converges to an element y € A.

An inner product on a linear space V is a mapping (-,-) : V x V — R that
has positivity, linearity, and symmetry. That is, it satisfies

(i) (x,x)>0forall z € V,(x, ) =0 if and only if x = 0;

(@) (Am1+ A, y) = A2, y) + Ao (22, 9) (10)
for all A, \s € R, 21, 29,y € V;
(tii)  (z,y) = (y,z) for all x,y € V.

Writing ||z|| = (x,2)1/2 for x € V, each of the following holds for all 2,y € V.

Proposition 3.9.

Cauchy-Schwarz inequality |[(x,y)| < ||z||||y|l; (11)
Triangle inequality llz + vyl <Ilz|| + ||yll; (12)
Parallelogram law e +y|* + 1z — vl =2(||z|]* + l|y]]?). (13)

Refer to appendix for proofs.
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Definiton 3.10. A Hilbert space 7 is a Banach space with norm ||-|| » endowed
with an inner product (-,-) : A x A — R compatible with its norm. That is,
for any element x € 2, ||z||» = (z,2)Y/2.

It is easy to see that ||z|| is a norm. Notice (i) and (ii) of (9) are satisfied
immediately by properties (i) and (ii) of (10) respectively and (9 iii) is the tri-
angle inequality (12).

The above combines the beginning of chapter 5 with section 5.5 from [GT].
In order to study the partial differential equations we are interested in, we need
a theory about linear maps on Banach and Hilbert spaces. The following three
Lemmas are built from the beginning of chapter 3 of |S] and also incorporates
details from |R]. Let & and & be Banach spaces. A mapping ¢ : B — Z is
said to be linear if and only if ¢ satisfies

oz +y) =p(z) + ¢(y) for all z,y € # and (14)
p(ax) = ap(z) for all @ € R and z € A. (15)

Note that by (14), ¢(0) must equal 0 € 2. A description of continuity of
linear maps is necessary to apply the theorems to follow. We now give the
definition of continuity in a general Banach space setting, where the continuity
of a generic function is given in terms of the Banach space norm, which is then
focused to the case of linear maps.

Definiton 3.11. Let £, be Banach spaces with norms || - ||z and || - ||o. A
function v : B — D is said to be continuous at xqg € A if and only if for each
€ >0 there is a 0 > 0 so that if ||x — zo||z < 0 then ||¢Y(x) — P (xo)||o < €. If 1
15 continuous at each xo € B, we say that ¥ is continuous.

Notice that if Z = 2 = R, then this definition is identical to the usual
concept of continuity of real functions of one variable. That is, f : R — R is
continuous at zy € R if and only if for every ¢ > 0 there is a § > 0 such that if
|z — x| < & then |f(z) — f(zo)| < e.

That a linear mapping from R into R is continuous if it is continuous at
xg = 0 is a well known result. The same property holds for linear maps defined
on Banach spaces as shown in the following lemma.

Lemma 3.12. Let # and & be Banach spaces and ¢ : B — 2 be a linear
mapping. If o is continuous at x = 0 then ¢ is continuous at each x € A.
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Proof:

Let € > 0 be given. Assume that ¢ :  — Z is continuous at 0 € %, then there
is a 0 > 0 so that if ||z —0|| < ¢ then ||p(z) —¢(0)||s < €. Now, let zy, z € A
be such that ||z — xo||z < 0. Then ||o(x — z9) — ¢(0)||# < €, but by linearity
this means ||¢(x) — p(z0)||2 < e. That is, ¢ is continuous at zy. Since zy was
arbitrary, ¢ is continuous.

*

Using this lemma, the continuity of a linear map can be determined by
checking continuity at = 0. The next lemma gives a necessary and sufficient
condition for continuity at the origin for linear maps defined on Banach spaces.

Lemma 3.13. Let A, 2 be Banach spaces and ¢ : B8 — 2 a linear map. Then,
@ 15 continuous if and only if ¢ is bounded, that is, if and only if there is a k > 0
s0 that

lle(@)||lo < kllz||2 for all x € AB. (16)
Proof: Assume that ¢ is bounded. Let € > 0 be given and set § = S lren
K
satisfies ||z||4 < d, then
€
le(@)llo < kllalls < s =e (17)
Since ¢ > 0 was arbitrary, ¢ is continuous at x = 0 and therefore ¢ is a

continuous mapping by Lemma 3.12.
Now assume that ¢ is continuous. Then, in particular, ¢ is continuous at
x = 0. Thus, there is a § > 0 so that ||p(z)||s < 1 for ||z|| < 6. Next, let

y#0€ AB. Then, z = (5H ZT’ satisfies ||z||# < 0 and from the linearity of ¢
Yz
we can see that
llyllz o
PWllz = ‘ TP
Hy@H(5y>
'
0 Iirzalz
1yl |1y
5 o2l < == (18)
. 1
Therefore, with k = 5 we have
leW)ll2 < kllyl|2. (19)
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Since & is independent of y and y # 0 € 2 was arbitrary, we have that (19)
holds for every y # 0 € %. Finally, to see that (19) holds for y = 0, recall
that p(0) = 0 € B. That is, since @ is linear, for any z € Z we have p(z) =
o(x) + ¢(0). Thus, ¢(0) = 0 and (19) holds trivially. Therefore, (19) holds for
all y € # and condition (17) is satisfied.

*

Next we give a technical result about the range of a linear map ¢, Rng(y),
that we will need in the proof of the Lax-Milgram theorem at the end of this
section.

Lemma 3.14. Let & be a Banach space and @ : B — A be a continuous linear
mapping. Suppose that there is a v > 0 so thal ¢ satisfies

vl[zllz < lle(@)l]2 (20)
for all x € B. Then, Rng(p) is a closed set.

Proof Suppose Rng(y) is not closed. Then, there is a z € Z that is a limit
point of Rng(y) not lying in Rng(y). That is, z # p(z) for any = € B. As z
is a limit point, choose a sequence {y;} C Rng(yp) converging to z in 2. Now,
since {y;} C Rng(y) we have that y; = ¢(z;) for some x; € Z. Since {y;}
converges to z in 9, it is Cauchy in 2 and (20) gives us that the sequence {xz;}
is also Cauchy in #. As Z is complete, {z;} converges to an element z € 2.
Now, let € > 0 be given. Then,

lo(z) = 2llz = lle(x) — () + () - zllz
< e = z)llz + 1y — 2ll2
< &llz —2illg + |[yi — 2|2 by the continuity of ¢
< €

for ¢ sufficiently large. Thus, ||p(z) — z||s = 0, that is, ¢(x) = z, must be true.
Therefore we conclude that z € Rng(y), a contradiction.

*

Linear maps ¢ : & — R are important in the context of Hilbert spaces as they
are compatible with the inner product. For example, consider the Banach space
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R with inner product defined by (z,y) = zy. It is clear that with this inner
product, R is a Hilbert space since

lo]le = |2| = (%)/* = (,2)

/2.

Linear maps on R are of the form y = ma where m is a real constant. To see
that these mappings are given by the inner product, consider the following. Let
¢ : R — R be linear. Then, p(z) = mx for a constant m. Setting y = m
we have that p(z) = (z,y) for all x € R. That is, there is a unique y € R so
that ¢(x) = (z,y) for all x € R. This example is a special case of the Riesz
Representation Theorem below. Before stating the result, we introduce the
notion of linear functional and dual space. The following definition and three
theorems are presented in sections 5.4, 5.7, 5.6, and 5.8 of |GT]| respectively.
The proof of Theorem 3.17 includes detail from section 2.1 of |S].

Definiton 3.15. Let % be a Banach space. A linear mapping ¢ : B — R 1is
called o linear functional. The collection of all continuous linear functionals
defined on % is called the dual space of % and is denoted by FB*.

Theorem 3.16. (The Riesz Representation Theorem) Let 7€ be a Hilbert space
with norm || - || and inner product (-,-). Then, for every bounded linear func-
tional ¢ on F, there is a unique y € J so that p(x) = (x,y) for all x € H,
that is, each linear functional ¢ € JFC* is given by the inner product.

Before proving this result we require a technical theorem known as the pro-
jection theorem. This theorem specifies that given a closed subspace .# C ¢
we may write any « € J as ¢ = z+w where 2 € .# and w € .# ", where .4
denotes the orthogonal compliment of .# in 7. In the context of R?, we may
think of .# = span{(1,0)} and .#*+ = span{(0,1)}. Then, any (z,y) € R?
may be written as (z,y) = (z,0) + (0,y) = z + w where z € 4 and w € .4*.

Theorem 3.17. (The Projection Theorem) Let 4 be a closed subspace of a
Hilbert Space 7. Then for v € ', x =y + z wherey € .M and z € H+.

Proof:
Let .# be a closed subspace of 57. If ©x € 4, set y = x and z = 0. Thus, we
may assume .# # ¢ and that x & .#. Set

d = dist(z, #) = inf ||z —y||» > 0.
yeM
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By the definition of d, there is a sequence {y,} of elements of .# such that
||z — yn||» — d. Apply the parallelogram law to = — y,, and x — y,, to obtain

1@ = yn) + (@ = ym)ll5% + 1@ = yn) — (@ = v |5 = 2llz — vl 5 + 2/l =yl 5

or equivalently,

S 21z — yul -

(Yn + Ym) 712
e = 57|+ o = 9l = 2l =l

(Yn + Um)

Since .# is a subspace, is in .#. Hence the left hand side is not

smaller than

This implies
1y = yal 5 < 2|12 = yall% + 2|2 — yull5e — 4d”.
As m,n — oo, the right-hand side approaches 2d? + 2d? — 4d? = 0. Therefore
Y — Yn||% — 0 as m,n — oo

Thus, {y,} is Cauchy in . Using that 7 is complete, there is a y € 5 such
that the sequence {y,} converges to y. As .# is closed in 7, y € ., and

d = lim [z = ya|lr = [l =yl
n—oo
Now write x = y+ 2 where z = 2 —y. All that remains is to show that z € .Z*,

in other words, that (t,z) = 0 for all t € .#. For any t € .# and a € R,
y+ at € 4 and so

& < e —y—atll
= (z—at,z—at)
= |2l5 — 20t 2) + o?|Jt][5 (21)

Since ||z]|* = d?, (21) simplifies to give
{t,z)
{t,2)

IN

%||t||if for a > 0,

Y

a
§||t||2yf for a <0,
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that is,
| |l
—7“75“,2%0 < (t,z) < 7\\75“,2%0- (22)

Since (22) holds for all o € R, it must be that (¢,z) = 0 for all ¢ € .#, which
can only happen if z is orthogonal to ¢, that is z € .Z*.

*

Proof of Theorem 3.16: Let .4 denote the null space of ¢, that is A4 =
{z | p(x) = 0}. If &/ = 5, the result is proved by taking y = 0. Otherwise,
since .4 is a closed subspace of 7, there exists by Theorem 3.17 an element
z#0€ At C H# such that (z,2) = 0 for all z € 4. Hence ¢(z) # 0 and,
moreover, for any x € S,

oz = A92) = o) - £ () =0

z
p(2) p(2)
So that the element x — gpéx; z € 4. This means
o(z
< B 90(17)2’ Z> 0
p(2)
that is,
o(r) 2
x,z) = —||2||
(@.2) = £ eI
and hence ¢(x) = (x,y) where y = (’D<Zz z.

To see that y is unique, assume the contrary. Let z; be an element satisfying
o(x) = (x, z) for all x € H#. Then

olx) —p(x)=(r,z1 —y) =0  forallx € 7.

Choosing x = z; — y shows that ||z; — y||» =0, and so z; = y.
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Now that we have the Riesz Representation Theorem, it can be extended to
bilinear forms. This generalization is known as the Lax-Milgram Theorem, the
main tool used to prove the final theorem of this paper. The following proof
elaborates on the proof of the Lax-Milgram Theorem given in |GT| (page 83)
and I thank Dr. Rodney for related notes. Recall that a real Bilinear form
L(z,y) on a Banach space & is a function L : # x & — R that is linear in
both variables separately. That is,

(1)  L{ax +by,z) =al(zx,2) +bL(y,z) and
(17)  L(xz,aw 4+ bz) = aL(z,w) + bL(x, 2).

Theorem 3.18. (The Lax-Milgram Theorem) Let S be o Hilbert space and
L(z,y) a real bilinear form defined on € that satisfies the two following prop-
erties.

(1) L is bounded on . That is, there is a k > 0 so that
|L(z, y)| < &llz|[llylle for al x,y € H.

(it) L s coercive on . That is, there is a v > 0 so that
L(z,x) > v||z||% for all x € 2.

Then, given @ € F* there is a unique z € € so that p(x) = L(x, z) for all
xeH.

Proof: Let Z be a Hilbert space and L(x,y) a real bilinear form defined
on # that is both bounded and coercive. Fix y € 5. Then, since (i) holds,
the mapping L(z,y) = A(x) is a bounded linear functional on 47, that is, A(x)
is a continuous linear functional on 7. By the Riesz Representation Theorem
(Theorem 3.16) there is a unique element z, € JZ so that L(z,y) = A(zx) =
(x,2,) for all x € J#. Since z, is uniquely determined by y, we can define a
mapping T : & — J¢ by setting T'(y) = z,, which gives L(z,y) = (z,T(y)).
This mapping T is linear. To see this, let v,w € S and a,b € R. Then
s=av+bw e A and T(s) = zs = Zgprpw- But, since L is linear in the second
variable we have L(x,av + bw) = aL(x,v) + bL(x,w) = alx, z,) + b{x, z,) =
(x,az, + bzy,). This means that T'(s) = aT'(v) + 0T (w) giving that 7' is linear.
As a linear mapping, 7" is bounded. To see this notice that as T'(y) € S for
y € € we have

1715 = (Tw), TW)H = IL(T (), y)| < &IT W)l Lellylle (23)
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by (i), and so dividing by ||T(y)||.# gives ||T(v)||.» < &||y||. Also, by (ii) we
have

v|[2]5% < L(z,2) = (2, T(x)) < [|alle|T(2)] (24)

giving that v||z||,» < ||T(2)||. These estimates combined with Lemma 3.14
give that T is a continuous linear map with closed range. Notice, as well, T is
both one to one and onto and therefore invertible. 7" is one to one by definition,
since T'(y) = #, and z, was uniquely determined by y. To see that 7" is onto,
notice that, since Rng(T') is closed, if 7" is not onto then we can apply the Pro-
jection Theorem (Theorem 3.17) to find a non-zero z € S so that (z, T(x)) =0
for all x € 7. Choosing z = z gives (z,7(z)) = L(z, z) = 0. This means that
z =0 by (ii), the coercive property of L, a contradiction.

And so we have that T is a continuous linear map that is both one-to-one
and onto. Therefore, T~! exists and is also continuous, one-to-one and onto.
Finally, let ¢ € #* be a continuous linear functional. Then, by the Riesz
Representation Theorem, there is a unique g € S so that ¢(x) = (z, g) for all
x € . So, applying T~! we obtain

p(z) = (z,9) = L(x,T7(9))
for all x € . Thus for ¢ € 2* we have a unique z = T71(g) € ## such that
o(x) = L(x, z) for all x € 2.

*

3.2 Sobolev Spaces and Weak Solutions

In this section we apply the Banach and Hilbert space theory to the Sobolev
space we are interested in working with. To define this Sobolev space we require
the definition of the classical Banach spaces of analysis.

For 1 < p < oo we let LP(Q2) denote the Banach space consisting of functions
on ) whose p* power has finite integral. That is,

Q) ={f: Q= R| (/\f\%lx)l/p < co}. (25)

The norm on LP(£2) is defined by

1/p
= sy = ( [ 1apaz) ™" (26)

Q
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The above definition and norm are given in section 7.1 of [GT], however, that
LP(Q) is a Banach space with norm (26) for 1 < p < oo is a deep mathematical
result known as the Riesz-Fischer Theorem that will be taken as fact here. One
may find the statement and proof of the Riesz-Fischer theorem in [P] p. 277.

Before defining the Sobolev space to be considered, we begin by examining
the space L?(Q) of square integrable functions.

Let u,v € L?(Q), then we define their inner product and norm by setting

< U, v >9= /u(x)v(x)dx (27)

Q

That (27) is an inner product is easily verified as the three properties of (10)
are satisfied.

(i) <u,u>o= /u(x)u(x)dx = /u(m)zdx >0, since u?(z) > 0.

Q Q
(11) < Atug + Ao, v >o9= /[Alul(x) + Aug(z)|v(x)dx
)
= /[Alul(x)v(w) + Aoug(z)v(x)]dx
= Al/ul(x)v(x)dx—i—/\g/u2(x)v(x)dx

:/\1 < U,V >2 +/\2 < U,V >9 .

(1ii) < u,v >9= /u(m)v(z)dm = /v(m)u(x)dx =< v,Uu >y .
Q

Q

Using this, we see that the L*(Q2) norm given by (26) is compatible with (27)
since

Jullzo = ( [ tu@Par) " = ([ u@uys) " —<wusr2. 9
Q Q

Therefore, the space L?(€2) is a complete normed linear space with a compatible
inner product, in other words, a Hilbert Space. With (27) and (28), we have a
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special form of the Cauchy-Schwarz inequality, (11),

vz l= / oie) < ( [lut@pas) ([ pewpar)”

Q
= |ullaf[v]]2

for all u,v € L*(Q).
Now look at the Sobolev space defined by
Wy (Q) = {u € L*(Q), Du € L*(Q)}.

Consider a related inner product on C}(Q) that accounts for the size of the
derivative of a function.

<u,v >Sy= /u(x)v(x)dx—l—/Du(x)DU(x)dx. (29)
o) Q

Using a familiar argument, see (27), it is simple to see that (29) is indeed an
inner product. This inner product defines a norm on C}(Q) by setting

1/2
ullwizg) =< u u>W = /|u 2dx—|—/|Du de : (30)

Definiton 3.19. Let Q be a domain of R". The Sobolev space W, () is defined
as the closure of C§(Q) in the norm (30).

A more general definition for W*(Q), k > 1, is given by [GT] in section
7.5. Using our definition, a generic element of VVO1 2(Q) is an equivalence class of
sequences of continuously differentiable functions Cauchy with respect to (30),
defined in 2 and with compact support. Also, since both inequalities

lull2) < [lullwiz@) and (31)
1Dull 2y < lullwr@) (32)
are true, any sequence {u;} Cauchy in the W;"*(Q) norm is also Cauchy in L*(Q)

and likewise the sequence {Du;} of vectors in R™ is Cauchy in L?(f2). Since
L*(9Q) is complete by the Riesz-Fischer theorem, there are elements u, @ € L*(Q)
so that u; — u and Du; — o in L?*(Q2). Therefore, to each equivalence class in
W,?(Q) there is a unique pair (u, @) with norm

[, @) lwragy = (ful3 +[1@13)" = Jim ([fullz + 1 Duyl[3)'72.

27



This definition of norm is identical to (30), and, with the inner product given
by (29), W,*(Q) is a Hilbert space.

We now discuss the notion of weak derivative. Let (u,w) € W, *(Q), and
select a sequence {u;} C Cg(Q) such that |ju; — u||x — 0 and ||Du; — @||s — 0

as J — oo. Then, for each j € N, we can integrate by parts against any fixed
v € C} () to obtain

/uj(m)Div(x) = —/v(x)Diuj(x)dx. (33)

Q Q

Furthermore, by the Cauchy-Schwarz inequality we have

‘/ujDivdx— /uDide‘ = ‘/(u] —u)Divdx‘
Q Q

Q

< / lu — u;||D;v|dx

o)
1/2 1/2
< (/]u—uﬂ%lx) (/]Dwﬁdx)
0 o)

< uy — ull 2l Divl] 22 (),

‘/vDiujdx—/mU‘ = ‘/U(Diuj—w)dx‘
Q Q Q

< / jv|| Dy, — lde

o)
1/2 1/2
< (/]v\%l:n) (/]Diuj —tﬁ\%lx)
O o)

< ||Dju; — tUHLZ(sz)HUHLZ(Q)'

and

Therefore, as j — oo we have that the functions wu, o satisfy

/uDivd:c = —/vwidx (34)

Q Q
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where v € C}(Q) is arbitrary and w; is the " component of . Equality

(34) looks very similar to an integration by parts formula, and so the function
w; € L*(Q) is thought of as the i"*weak derivative of u in Q and the vector
function  is the weak gradient of w in 2. We will write w; = D;u and @ = Du
for convenience. With this notation, we will refer to a generic element (u, Du)
of Wy*() by writing u € Wy*(2). Furthermore, we may now realize the
Hilbert space W,?(Q) as the collection of those weakly differentiable functions
u € L*(Q) whose weak derivative satisfies Du € L*(Q2). That is,

Wy (Q) = {u € L*(Q) | Du € L*(Q)}.
For clarity, we now give the formal definition of weak derivative.

Definiton 3.20. Let u € L*(Q). A wvector valued function @ = (wy, ..., w,) s
called the weak gradient of u in Q of and only if

/uDivdx = —/Uwidx

Q Q

for allv e CYQ) and i = 1,....,n. If such a W exists we say that u is weakly
differentiable.

A much more general form of (34) can be found on page 149 of |GT]|

Definition 4.21 below allows the interpretation of W, () as the collection
of all those u € L?(2) with weak gradient Du € L*(Q) and u = 0 on 9. This
interpretation is not obvious. The interested reader may refer to |GT| for the
development of this idea.
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